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Abstract

Silylations of the C-2 hydroxyl group of cyclodextrins were carried out using t-butyldimethylsilyl imidazole in the presence
of 4A molecular sieves in N,N-dimethylformamide. A unique aspect of this silylation method is the temperature dependence
of the regioselectivity; silylation at 0 ◦C regioselectively favored the C-6 position to afford mono-6-O-t-butyldimehylsilyl-
cyclodextrins, whereas silylation at 140 ◦C exhibited high regioselectivity on the C-2 hydroxyl group.

Introduction

In the field of organic synthesis, silylations of hydroxyl
groups have been widely utilized as a protection tech-
nique [1], and accordingly silylation of cyclodextrins, es-
pecially using a t-butyldimethylsilyl (TBDMSi) group [2],
has been employed. Following the report by Michalski et al.
describing the preparation of hexakis(2,6-di-O-TBDMSi)-
α-CD [3], several silylations have been utilized for the
purification of CD derivatives [4], or for the protection
of the C-6 and/or the C-2 hydroxyl groups of cyclodex-
trins [5], and subsequently, these protected CDs have been
manipulated with further modifications. In these silyla-
tions, except for the methods described by D’Souza et
al. [5(d)] and by Bukowska et al. [5(g)], the CDs were
silylated using TBDMSi chloride, either with imidazole
in N,N-dimethylformamide (DMF) or without imidazole in
pyridine, resulting in a highly regioselective production of
6-O-TBDMSi-CDs or 2,6-di-O-TBDMSi-CDs. The preced-
ing investigations have demonstrated that the reactivities
of the hydroxyl groups of CDs toward silylation increase
in the order as follows: OH-6 � OH-2 � OH-3. The
Bukowska method involved the trimethylsilylation of α- and
β-CDs with N-(trimethylsilyl)acetamide in DMF resulting
in a highly effective production of per-2,6-O-trimethylsilyl
CDs; however, regioselectivity between the C-2 and C-6 hy-
droxyl groups were not observed [5(g)]. As a unique method
for the direct regioselective silylation of the secondary hy-
droxyl groups of β-CD, D’Souza et al. have reported on
the silylation of β-CD with TBDMSi chloride using NaH
as a base in DMF [5(d)]. However, an average degree of the
silylation was approximately six, moreover it was unclear
whether the silylation occurred at the C-2 or C-3 posi-
tion. Furthermore, this D’Souza’s method for α-CD resulted
in silylation of the primary hydroxyl group. Thus, direct
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regioselective silylation of the C-2 hydroxyl geroup(s) of
unprotected CDs has been a challenge within cyclodextrin
chemistry. Herein we report a highly regioselective mono-
silylation of the C-2 hydroxyl group of unprotected α-, β-,
and γ -CDs.

Materials and method

Materials

Powdered 4A molecular sieves, DMF, and imidazole were
purchased from Nacalai Tesque, Inc. (Kyoto, Japan).
Powdered 4A molecular sieves were heated at 250–300 ◦C
for 2 h. α-, β-, and γ -CDs were purchased from Wako Pure
Chemical Industries, Ltd. (Osaka, Japan) and dried under
vacuum at 120 ◦C for 12 h. TBDMSi imidazole was pur-
chased from Tokyo Chemical Industry Co., Ltd. DMSO-d6
was purchased from Aldrich Chemical Co. (St. Louis, MO,
USA).

Characterization of CD compounds

1H and 13C NMR spectra were recorded using a JEOL
JNM-A500 spectrometer in DMSO-d6. 1H and 13C NMR
chemical shifts were assigned on the basis of 1H -1H
COSY, DEPT 13C NMR, and 1H–13C COSY experiments.
FAB mass spectra (positive) were measured using a JEOL
DX-303 instrument with glycerol as a matrix.

General procedure for reactions of CDs with TBDMSi
imidazole

A mixture of CD (1.0 mmol) and freshly activated powdered
4A molecular sieves (2 g) in DMF (22 ml) was stirred at
20 ◦C for 2 h. After maintaining the reaction mixture for 10
min at desired temperature, TBDMSi imidazole was added,
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and the reaction mixture was stirred at the same temper-
atures. The reaction was monitored using silica gel TLC
(6 : 3 : 1, MeCN/H2O/28% aqueous NH3 [6]). After the re-
action was deemed as complete, the molecular sieves were
removed by filtration, and the filtrate was concentrated un-
der reduced pressure, then dissolved in a mixture of DMF
and H2O (1 : 50, v/v). The solution was readily purified
using a simple open reverse-phase column chromatography
(15 × 150 mm, Fuji Silisia Chromatorex-ODS DM1020T
gel, 0–50% aqueous MeOH) to give pure silylated CDs.

Results and discussion

Recently, sulfonylations of α-, β-, and γ -CDs using sulf-
onyl imidazole reagents in the presence of molecular sieves
in DMF have been reported for the exclusive regioselective
sulfonylation of the C-2 hydroxyl groups [7]. Although the
mechanism of this sulfonylation remains unclear, we have
undertaken a similar strategy for the regioselective mono-
silylation of the mono C-2 hydroxyl group by reacting α-,
β-, and γ -CDs with TBDMSi imidazole in the presence of
molecular sieves in DMF (Scheme 1). Initially, a mixture
of CD and freshly activated powdered 4A molecular sieves
in DMF was stirred at 20 ◦C for 2 h. After maintaining
the reaction mixture for 10 min at temperatures as listed in
Table 1, TBDMSi imidazole was added, and the reaction
mixture was stirred at the indicated temperatures. Mono-2-
O-TBDMSi-CDs and mono-6-O-TBDMSi-CDs were isol-
ated using a simple open reverse-phase column chromato-
graphy, but mono-3-O-TBDMSi- were not detected in any
of the silylation reactions listed in Table 1.

Experimental results of the silylations of α-CD are
summarized in Table 1. Silylation at 0 ◦C gave mono-2-
O-TBDMSi-α-CD 1 and mono-6-O-TBDMSi-α-CD 2 in
2.5 and 26% yields, respectively (entry 1), exhibiting un-
expectedly high regioselectivity toward the C-6 hydroxyl
group. Although at higher temperatures, the overall com-
bined yields of 1 and 2 were slightly lower (entries 2–6),
the regioselectivity towards the C-2 hydroxyl group was
markedly increased. The reaction at 140 ◦C (entry 6) exhib-
ited the highest regioselective silylation of the C-2 hydroxyl
group, with a relative value of 0.95 [(yield of 1)/(combined
yields of 1 and 2)]. Silylation at 20 ◦C for 24 h, followed by
increasing the temperature to 110 ◦C for 2 h (entry 7) or to
140 ◦C for 1 h (entry 8) exhibited comparable results as that
for 20 ◦C for 24 h (entry 2), thus indicating that increasing
the temperature after the initial silylation period does not
result in either the decomposition of 1 and 2, nor in the
migration of silyl group from the C-6 to the C-2 oxygen.
Conversely, silylation at 110 ◦C for 2 h followed by redu-
cing the temperature to 20 ◦C for 24 h (entry 9) exhibited
similar yields of 1 and 2 as for 110 ◦C for 2 h (entry 5),
indicating that decreasing the temperatures does not cause
the migration of the silyl group from the C-2 to the C-6
oxygen. Based on these observations, the regioselectivities
of the silylation of the C-2 and C-6 hydroxyl groups must
be attributable to the transition state of the silylation adduct,
which is dependent on the reaction temperature; reactivity

of the C-6 hydroxyl group toward the silylation at the lower
temperature is greater than that of the C-2 hydroxyl group,
conversely reactivity of the C-2 hydroxyl group at the higher
temperature is greater than that of the C-6 hydroxyl group.
Interestingly, in the cases of the CD sulfonylations, exclus-
ive regioselective sulfonylation of the C-2 hydroxyl groups
was independent of the reaction temperature, suggesting that
the mechanism of the silylation described herein may dif-
fer from that of the sulfonylation. Reactions without the
molecular sieves afforded only trace amounts of 2 without
any mono-2-O-TBDMSi-α-CD (1) (entries 10-12), indicat-
ing that 4A molecular sieves is necessary in the silylations
of both C-2 and C-6 hydroxyl groups.

In an attempt to improve the yield of 1, two- or three-
molar TBDMSi imidazole was used, since multi-silylation
can generally occur due to the large number of hydroxyl
groups of α-CD, resulting in a successful increase of the
yield of 1 (entries 13–16). It should be noted that in the
cases with an excess amount of TBDMSi imidazole, the
regioselectivity of the silylation of the C-2 hydroxyl group
actually decreased. When the silylations were carried out
in the presence of one or two-molar imidazole at 110 ◦C or
20 ◦C (entries 17-20), the regioselectivities of the silylation
of the C-2 hydroxyl group were significantly lower. How-
ever, addition of two-molar imidazole at 20 ◦C or 110 ◦C
(entries 21 and 22, respectively), following the initial silyla-
tion at 20 ◦C, resulted in yields that were similar to that
without the addition of imidazole (entry 2). Therefore, al-
though imidazole must play a role such as activation of the
C-6 hydroxyl group and/or inactivation of the C-2 hydroxyl
group toward the silylation, it does not appear that imidazole
causes the decomposition of the mono-TBDMSi-α-CDs (1
and 2) or the migration of silyl group. In regard to the
cases of using two- or three-molar TBDMSi imidazole as
described earlier, a greater amount of free imidazole should
be present in these reaction systems, as compared to the one-
molar TBDMSi imidazole, and this increase may cause the
decrease of the regioselectivity of the silylation of the C-2
hydroxyl group. If the presence of imidazole in the silylation
system using TBDMSi imidazole can be lowered, or if the
imidazole can be excluded from the system, regioselectiv-
ity of the silylation toward the C-2 hydroxyl group could
perhaps be increased.

Results of Silylations of β- and γ -CDs were summarized
in Tables 2 and 3. Regioselectivity between C-2 and C-6 hy-
droxyl groups in these silylation was dependent on reaction
temperature similar to that for α-CD; the silylation at the
higher temperature exhibited the greater regioselectivity on
the C-2 hydroxyl group. Interestingly, investigations demon-
strated that the regioselectivity of the C-2 hydroxyl groups of
α-, β-, and γ -CDs toward silylation increase in the order as
follow: γ -CD > β-CD > α-CD. Relative values of [(yield of
2-O-TBDMSi-CD)/(combined yields of 2-O-TBDMSi-CD
and 6-O-TBDMSi-CD)] at 20 ◦C for α-, β-, and γ -CDs are
0.19, 0.42, and 0.56, respectively, and the values at 110 ◦C
are 0.92, 0.93, and 0.95, respectively. These results suggest
that the regioselectivity between the C-2 and C-6 hydroxyl
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Scheme 1. Silylation of α-, β-, and γ -CDs.

Table 1. Silylation of α-CD with TBDMSi imidazole in the presence or absence of 4A molecular sieves (MS
4A) in DMFa

Entry Equiv. of MS 4A Temp. (◦C) Time (h) Yield (%)b Value of [1/1 + 2]c

TBDMSi 1 2
imidazole

1 1 added 0 24 2.5 26 0.088

2 1 added 20 24 4.6 19 0.19

3 1 added 50 5 11 8.2 0.57

4 1 added 80 5 16 4.0 0.80

5 1 added 110 2 16 1.3 0.92

6 1 added 140 1 15 0.79 0.95

7d 1 added 20 + 110 24 + 2 4.5 19 0.19

8e 1 added 20 + 140 24 + 1 4.3 18 0.19

9f 1 added 110 + 20 2 + 24 16 1.3 0.92

10 1 non 20 24 0 traceg –

11 5 non 20 24 0 traceg –

12 5 non 80 5 0 traceg –

13 2 added 110 2 20 2.9 0.87

14 3 added 110 2 19 4.5 0.81

15 2 added 140 1 17 1.3 0.93

16 3 added 140 1 15 2.2 0.87

17h 1 added 110 2 13 2.8 0.82

18i 1 added 110 2 13 4.4 0.75

19h 1 added 20 24 2.4 26 0.085

20i 1 added 20 24 1.4 28 0.048

21j 1 added 20 + 20 24 + 24 4.4 19 0.19

22k 1 added 20 + 110 24 + 2 4.3 18 0.19

a Reactions were carried out using α-CD (1.0 mmol), TBDMSi imidazole (listed amount), powdered activated
4A molecular sieves (2.0 g, in case of addition), and DMF (22 mL) unless otherwise specified.
b Isolated yield.
c Value of [(yield of 1)/(combined yield of 1 and 2)].
d Reaction was carried out at 20 ◦C for 24 h, and then at 110 ◦C for 2 h.
e Reaction was carried out at 20 ◦C for 24 h, and then at 140 ◦C for 1 h.
f Reaction was carried out at 110 ◦C for 2 h, and then at 20 ◦C for 24 h.
g Product was detected only on silica gel TLC.
h Reaction was carried out in the presence of imidazole (1.0 mmol).
i Reaction was carried out in the presence of imidazole (2.0 mmol).
j Reaction was carried out at 20 ◦C for 24 h, and then in the presence of imidazole (2.0 mmol) at 20 ◦C for 24
h.
k Reaction was carried out at 20 ◦C for 24 h, and then in the presence of imidazole (2.0 mmol) at 110 ◦C for
2 h.
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Table 2. Silylation of β-CD with TBDMSi imidazole in the presence of 4A molecular sieves in
DMFa

Entry Equiv. of Temp. (◦C) Time (h) Yield (%)b Value of [3/3 + 4]c

TBDMSi 3 4
imidazole

1 1 0 24 4.0 16 0.20

2 1 20 24 6.1 8.4 0.42

3 1 50 5 9.0 4.7 0.66

4 1 80 5 13 2.1 0.86

5 1 110 2 15 1.2 0.93

6 1 140 1 12 0.49 0.96

7 2 110 2 28 3.7 0.88

8 3 110 2 32 4.9 0.87

9 2 140 1 28 1.8 0.94

10 3 140 1 26 2.0 0.93

a Reactions were carried out using β-CD (1.0 mmol), TBDMSi imidazole (listed amount), activ-
ated powdered 4A molecular sieves (2.0 g, in case of addition), and DMF (22 mL) unless otherwise
specified.
b Isolated yield.
c Relative value of [(yield of 3)/(combined yield of 3 and 4)].

Table 3. Silylation of γ -CD with TBDMSi imidazole in the presence of 4A molecular sieves in
DMFa

Entry Equiv. of Temp. (◦C) Time (h) Yield (%)b Value of [5/5 + 6]c

TBDMSi 5 6
imidazole

1 1 0 48 7.5 14 0.35

2 1 20 24 11 8.8 0.56

3 1 50 5 11 4.5 0.71

4 1 80 5 14 2.7 0.84

5 1 110 2 12 0.66 0.95

6 1 140 1 6.2 0.22 0.97

7 2 110 2 13 1.0 0.93

8 3 110 2 11 1.0 0.92

a Reactions were carried out using γ -CD (1.0 mmol), TBDMSi imidazole (listed amount), activ-
ated powdered 4A molecular sieves (2.0 g, in case of addition), and DMF (22 mL) unless otherwise
specified.
b Isolated yield.
c Relative value of [(yield of 5)/(combined yield of 5 and 6)].

groups toward the silylation could be dependent on not only
reaction temperature but also cyclic structure of CDs.

Conclusion

We have discovered a temperature-dependent regioselective
mono-silylation of the C-2 hydroxyl group of α-, β-, and
γ -CDs using TBDMSi imidazole in the presence of molecu-
lar sieves in DMF; the silylation at the higher temperature
exhibited the greater regioselectivity on the C-2 hydroxyl
group. This silylation method can be highly useful since
the C-2 hydroxyl group can be directly silylated without the
protection of the C-6 hydroxyl groups.
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